

History of Orienteering Maps

- Early 19th Century: small scale topographic maps 1:100'000
- After 2nd world war: colored maps for orienteering 1:15'000
- First ISOM 1969: objective to standardize o-maps
- 1972 Introduction of concept of runability
- 90's Digital cartography
- 05's GPS / Airborne Laser Scanning

Strength of ISOM

- Experience since more than 40 years
- More or less established all around the world
- Well balanced amount of colors and symbols
- Established for simple application (print, pencil & ink, foot steps and compass bearing)
- KISS (Keep It Simple and Stupid)

Weaknesses of ISOM

- Only adopted to digital cartography
- Advantages of digital cartography not considered (e.g. non-period raster, more sophisticated symbols)
- (Dis-) Advantages of digital cartography not considered (compared to ink drawing much more precise representation of terrain is possible)
- Difficult to combine colored area symbols
- Hatched symbols disturbs legibility (e.g. 11th August 2010
 Hatched symbols disturbs legibility (e.g. 14th ICOM, Trondheim
- Not sufficient possibility to define special symbols

Weaknesses of ISOM

- Not all symbols have a clear definition
- Definition, application and graphic implementation are mixed

Trends

- Printing: Just-in-time map production
- Printing: Combine course and map
- Printing: New technologies
 - Laser (Xerox / Dry Toner Transfer)
 - 4 Color Off Set Printing (CMYK-Off Set / CMYK+b-Off Set)
 - Digital Off Set Printing (Indigo / Wet Toner Transfer)
 - Others

 Airborne Laser Scanning, very precise base maps with a lot of detail 11th August 2010
 Mobile Mapping (GPS)

Threats

Laser printing jeopardize advantages of digital cartography e.g. slight contour lines are spoiled by poor resolution of laser printing and color appearance

 \rightarrow then, should we implement them?

Airborne Laser Scanning and Mobile Mapping tends to result in to much detailed maps, which reduced the whole purpose of the contour line image (pseudo-3-dimensional effect)

→ Less neighboring contours, which spoils pseudo-11th Au**B** CHMP. effect 14th ICOM, Trondheim

Contour lines should be to many point objects

Threats

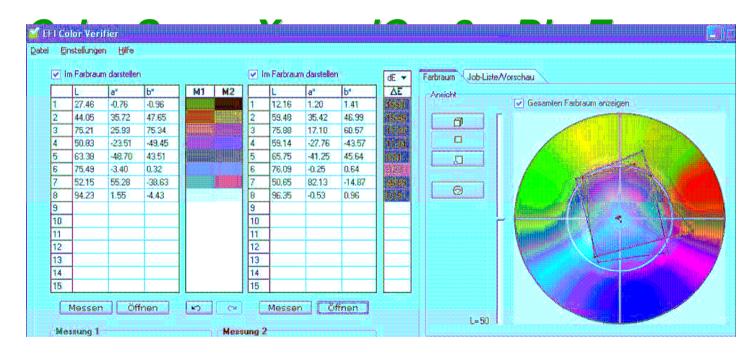
■ Airborne Laser Scanning and Mobile Mapping tends to result in to much detailed maps. It is easier to enforce enlarging maps scales of doing generalization instead.
→ Is this the solution?

Opportunities

Use possibilities of digital cartography
 Consider the development of the printing technology

Case Study: Printing Technology for Orienteering Maps by Orell Füssli Cartography Switzerland

- Objective: Recommendation printing O-maps with courses included for small amount of copies
- Guarantee PMS colors of ISOM
- Abrasion resistance
- Water resistance

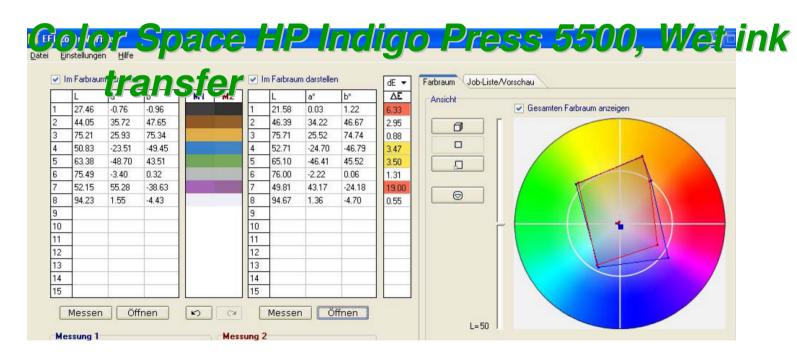

Conclusion:

- 5 (6) color spot color off set (PMS) → best practice (reference)
- Laser (CMYK) dry toner transfer → not suitable at all
- 4 color off set (CMYK + purple) \rightarrow not suitable
- 6 color off set (CMYK + brown + purple) \rightarrow good

■ 7 color off set (CMYK + brown + green + purple) → ^{11th August 2010} good, for large amount of copies

11th August 2010

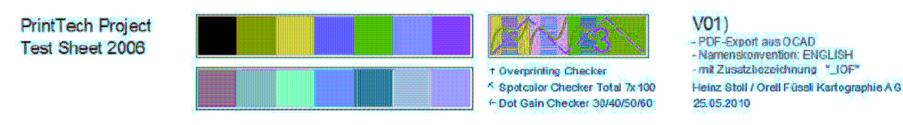
14th ICOM, Trondheim



Conclusion:

- Digital Off Set (CMYK + orange + violet + turquoise)
- Wet toner transfer → good, for few amount of copies

11th August 2010


14th ICOM, Trondheim

Conclusion:

- Digital Off Set (CMYK + orange + violet + turquoise)
- Wet toner transfer \rightarrow good, for few amount of

14th ICOM, Trondheim

Structure of ISOM

- Definition of the symbol
- Graphic implementation
- Application
- Minimum dimension in terrain
- Impact on runability
- Impact on visibility
- Control description

Landforms (earth covered)

- Contour lines for glacier and maybe for rocky areas
- New graphic implementation for form lines
- Broken ground \rightarrow None period raster
- New special landform feature

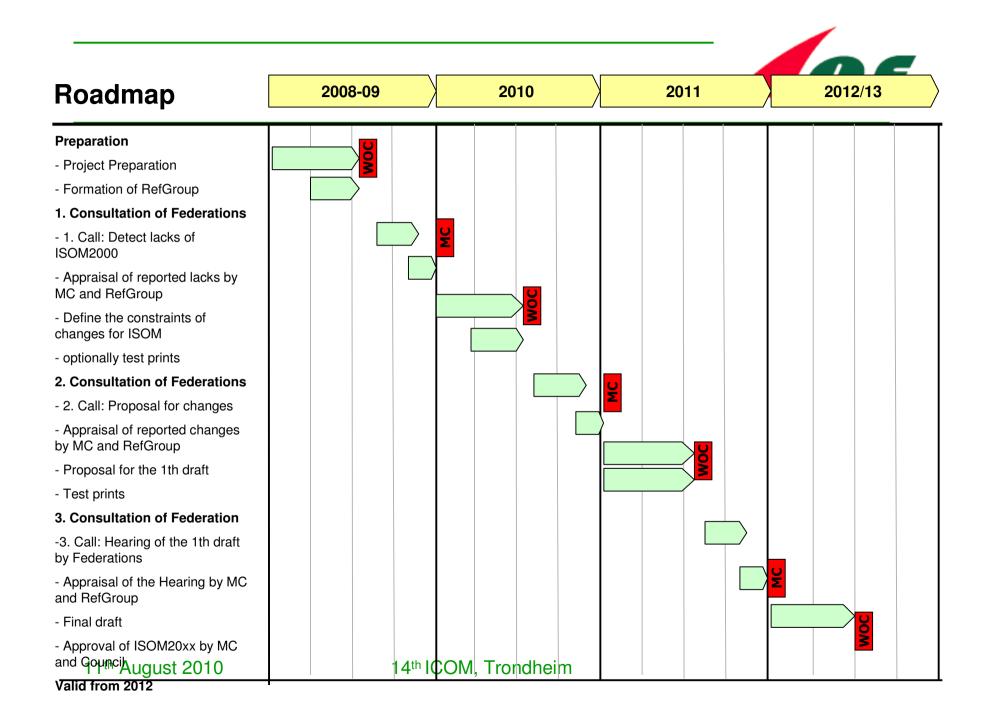
Landforms (rocky areas)

- For rock features paler black
- Boulder field \rightarrow new graphic implementation
- Stony ground \rightarrow new graphic implementation

Water body

- Impassable water body like ISSOM
- Stick to the rules in ISSOM
- Implement passable water body
- Seasonal pond, water course
- New prominent water body feature

Vegetation


- 3 or 4 level of Vegetation
- New graphic implementation for undergrowth and semi-open area (none-period raster)
- Broken ground \rightarrow None period raster
- New prominent vegetation feature

Manmade feature

- Narrow ride good / bad runability
- Prominent man made feature triangle

