GPS in orienteering mapping Pratical use of GPS in orienteering mapping For WOC2005 JAPAN Kazushige HATORI

### Introduction

- Why the use of GPS in o-mapping
   How GPS works
- GPS problems in o-terrain
- How to do o-mapping with GPS
- Trimble Pathfinder Pro XR
- How to make basemap

### Introduction2

- Actual output from GPS mesurement
- Effectiveness
- Weak points
- Conclusion
- Future



and i i i i

# Why the use of GPS in o-mapping

- Very rusty basemap (made by local government) around Aichi WOC2005 Area
  - Japanese thick ceder forest
    - Test making basemap by Harvey was still not good enough
  - Cost saving
    - taking new aerial photos is expensive
    - still expensive to conduct satellite or aerial lazer mapping

# Why the use of GPS in o-mapping

- Demo at ICOM97 Grimstad by Trimble
- Need? to support GPS tracking system
- Cost & Time saving
  - man power shortage

 High-spec GPS already used at nature protection/investigation for rare animals, birds, forest vegitation, etc...

### How GPS works

4sec

## GPS signal has satellite position and very accurate clock

## Three mesurements with accurate clocks, in two dimensions

3sec

### How GPS works

In 3 dimensions, 4satellites are needed to know altitude/accurate position.

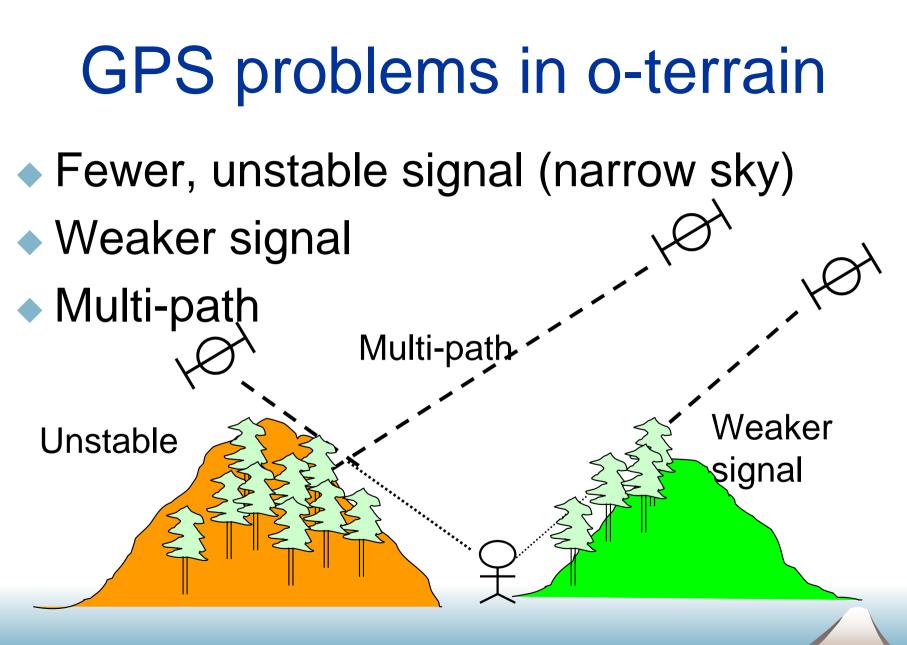
28satellites available for now, each orbit is ca.12hours round

 Still ca.5m horizontal error normally (even after S/A was canceled)

4se

 $S \alpha$ 

### How GPS works Differential correction


In order to correct normal ca.5m error,

- Remote (public) GPS reciever at a fixed position can calculate the error, and broadcast the differential information for <u>Realtime differntial correction</u>.
- In Japan, longwave signal is transmitted from a sea beacon. Info is 10sec sampling interval (it's available within 50-100km from beacon)
- In Europe ? How long sampling intervals ?

### How GPS works Differential correction

#### Postprocessing Differential Correction

- At fixed GPS, differential information is collected and logged as file. (or getting public info from Internet nowadays)
- Both the differential info-file and file collected field rover are run through a process in the software, and then the output is corrected.
- We haven't succeeded to use PDC yet.



### GPS problems in o-terrain

- GPS measurement is not all the time available, depending on satellite positions (at least 4 good position satellites needed, but uneven distributions due to the war!)
  - However, unavailable time can be calculated by software beforehand (demo)

(lunch time, road measurement, or when moving to another area)

### How to do o-mapping with GPS

### GPS is used to measure only

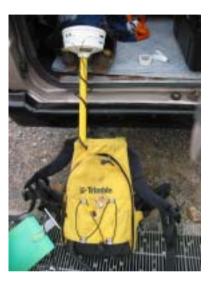
- Point (stone, saddle, peak, end of...)
- Line (path, veg.boundary, ridge, valley...) with text comment,

### before manual mapping.

 As GPS measure with seeing basemap, it's possible to know in advance where on basemap is horrible to survey

### How to do o-mapping with GPS

- Coverting GPS data to local plane coordinate (making DXF file)
- Public basemap scanned and adjusted to OCAD
- Put measured point/line features to ocad basemap exactly (import DXF)
- Print basemap with OCAD...


(also enable to use the features in case of map drawing)

How to do o-mapping with GPS What's needed for o-mapping

- GPS, Trimble Pathfinder Pro XR
- Software, Trimble Pathfinder Office
  - support for 600 local coordinates, diffinfo postprocessing, etc...
  - in total ca.10-15,000 euro in JPN

OCAD7/8, scanner, PC
 (Other GPS gears, ex. cheaper or less accurate one is possible to use ?)

- High-class realtime DGPS
- GPS receiver
- Datalogger (data collector)
- GPS signal & differential information Antenna (long wave 288-320 KHz)
- (Extra long wave antenna & booster)





Backpack over 5kg...



#### **GPSreceiver and 2 batteries**





Dif.info wave booster Antenna handmade...

GPS antenna

#### Datalogger ca.1kg?



- Realtime Differential GPS (water proof)
- Realtime accuracy is within 30cm 68% normally in open area
- Other high spec. function
- Taking ca.3-5sec to measure one point feature
- Line feature is basically consisted of point features. Vertex or Liner sampling(min.1sec)

However, in case of Japanese thick forest...

### How to make basemap, on Trimble

- After GPS measurement,
- Import logged data to PC
- On Software, convert WGS-84 data to local plane coordinate system
  - (ex. japan plane zone7)
- Export as DXF format file

### How to make basemap, on OCAD

## Need to make your o-map as <u>Real world coordinates</u>

- Angle should be magnetic north angle in order to incline the map grid
- Horizontal/Vertical offset should be offset distance from Local Coordinate Reference Position

### How to make basemap, on ocad

- Make 3 symbols for GPS measure <u>point</u>, <u>line</u>, and <u>comment</u>, in advance
- File...Import DXF file
  - Offset exsiting offset/angle
  - Coordinate GIS 1meter/unit
- Change all symbols to Point, Line, and Text(comment)

# Actual output from GPS mesurement

- 90% of measure points has within 2-5m divergence
  - (mailnly depends on the satellite numbers)
  - however, you can know 10% of error points easily during manual o-mapping.
- 80% time is suitable for GPS measurement in long term avarage
- Fresh differential information within 10sec lifetime is important (30sec is useless)

Actual output from GPS mesurement GPS spec. requirements

- GPS accuracy requirement should be always within 1m.
  - In the thick forest, divergence would be 3 times or more.
- Differential info age should be within 10sec.
- Time schedule for measurement is very important, it may require highspec GPS

### Effectiveness of using GPS

- A day GPS measurement cover more than 4days mapping area.
- Saving 25% more in mapping time
- you can get the information, condition of whole mapping area in advance

### Effectiveness of using GPS

- In general, more accurate than any other mapping techniques
- Less frastration for mapper
  - no use for counting pace, picking up path, veg., lines during manual mapping.
- Even non-mapper can use GPS gears

### Effectiveness of using GPS

- 25% saving time = 25% saving cost ?
  - In Japan, we also rent Trimble GPS gears for ca.300euro per a week to local clubs, organizers.
- 5kg weight, 8hours, Goood Training !!
  Any other use ?

### Weak points of using GPS

- Expensive high-class GPS gears
- Impossible to use altitude infomation
- Every point mesured is not necessarily correct
  - but a good mapper like all of you, can distingish error point easily...
- Not all the time and season, is good for GPS measurement

### Weak points of using GPS

- How to get fresh (within 10sec) differential information ?
  - if without using DI, GPS is no use for now
  - Buy&Using another High-class GPS to make differential information ???
  - getting from public information nearby
  - Cheaper hand-made task force, using handy garmin and PC, has not succeeded yet

### Conclusion

- Using GPS is necessary for thick forest o-mapping, for the time being
- Effective in saving time, raising accuracy, and sharing o-mapping jobs
- Good cost performance ?!
- Interesting and enjoyable to use GPS

### Future

- All the terrains for WOC2005 Japan will be measured by GPS
- In the near future, we'll realize postprocessing differential correction by cheaper way - for use everywhere (even in Europe)
- Amasing lazer mapping will appear soon. Contour intervals will be 15cm...